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ABSTRACT: Structural analysis of proteins and nucleic acids
is complicated by their inherent flexibility, conferred, for
example, by linkers between their contiguous domains.
Therefore, the macromolecule needs to be represented by an
ensemble of conformations instead of a single conformation.
Determining this ensemble is challenging because the
experimental data are a convoluted average of contributions
from multiple conformations. As the number of the ensemble
degrees of freedom generally greatly exceeds the number of
independent observables, directly deconvolving experimental
data into a representative ensemble is an ill-posed problem.
Recent developments in sparse approximations and compressive sensing have demonstrated that useful information can be
recovered from underdetermined (ill-posed) systems of linear equations by using sparsity regularization. Inspired by these
advances, we designed the Sparse Ensemble Selection (SES) method for recovering multiple conformations from a limited
number of observations. SES is more general and accurate than previously published minimum-ensemble methods, and we use it
to obtain representative conformational ensembles of Lys48-linked diubiquitin, characterized by the residual dipolar coupling
data measured at several pH conditions. These representative ensembles are validated against NMR chemical shift perturbation
data and compared to maximum-entropy results. The SES method reproduced and quantified the previously observed pH
dependence of the major conformation of Lys48-linked diubiquitin, and revealed lesser-populated conformations that are
preorganized for binding known diubiquitin receptors, thus providing insights into possible mechanisms of receptor recognition
by polyubiquitin. SES is applicable to any experimental observables that can be expressed as a weighted linear combination of
data for individual states.

■ INTRODUCTION

Macromolecules are inherently dynamic systems in equilibrium
between many conformational states. The predominantly
populated conformation (the major state) is generally the
most experimentally accessible. Its contribution to experimental
observables typically outweighs the contributions from the less
populated (minor) states, rendering those minor conforma-
tions, or so-called low-lying excited states, “invisible”.
Elucidation of these minor states can provide significant
insights into protein/RNA folding, dynamics, enzyme catalysis,
and biomolecular recognition.1−5 For example, the dominant
conformation of a protein may be ligand-binding incompetent,
whereas the minor states could constitute the conformers
capable of ligand binding.6 Knowledge of the ensemble of
relevant states of a macromolecular system could be extremely
important in understanding its energy landscape, and
fundamental to mechanistic description of biological function.
In recent years, significant strides have been made in

elucidating major and minor conformations and their relative
populations/weights using a battery of low- and high-resolution
experimental methods such as small-angle scattering (SAS),
fluorescence resonance-energy transfer (FRET), and nuclear
magnetic resonance(NMR).7−13 As a result, a description of a
system’s conformational ensemble, particularly the structures
and relative weights of each conformational state, is becoming
possible.
Determining conformational ensembles is of particular

importance for highly flexible systems (such as intrinsically
disordered proteins or multidomain proteins containing flexible
linkers), where a significant number of energetically similar
conformational states are populated at any given time. An
important class of such flexible systems are polymeric chains of
ubiquitin (Ub) protomers, called polyubiquitin (polyUb),
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which are formed by covalent linkages between the flexible C-
terminus of one Ub and one of the seven lysines or N-terminal
methionine of another Ub. PolyUb chains function as
molecular signals in the regulation of a host of vital cellular
processes in eukaryotes.14,15 For example, polyUb linked via
Lys48 serves as a universal signal targeting cytosolic proteins for
proteasomal degradation, whereas Lys63-linked chains play
regulatory roles in a variety of nonproteolytic pathways,
including DNA repair, NF-κB activation, and trafficking.
Uncovering the mechanisms that allow differently linked
polyUbs to function as distinct molecular signals requires
understanding of the conformational and recognition properties
of these chains. The current hypothesis is that the linkages
define the conformational ensemble for a given polyUb, which
in turn determines the ability of the chain (through
conformational selection or induced fit or combination thereof)
to adopt the structure/conformation required for binding to a
specific receptor.14 We have recently shown that Lys48-linked
diubiquitin (K48-Ub2), the minimal structural and recognition
element of longer Lys48-linked chains, exists in a pH-controlled
dynamic equilibrium between a “closed” (binding incompetent)
conformation and one or more “open”, binding-competent
conformations.9,16−18 The equilibrium exchange between
several states of the Ub2 has been verified by a number of
experimental methods, including NMR and spin-relaxation
measurements,9,16,17 site-specific spin labeling,16 and single-
molecule FRET.11 However, a number of open questions still
remains, in particular: (i) how many conformations are needed
to adequately represent the conformational ensemble and
dynamics of K48-Ub2; (ii) what are the relative populations/
weights of the open and closed conformations; and (iii) what is
the role of these states in the Ub2’s ability to recognize
numerous receptor proteins?
In this study, we not only focus on finding the representative

conformers of K48-Ub2, but also address the general problem
of recovering a representative subset of conformations from a
large oversampled ensemble, based on experimental observ-
ables that are physically determined by a weighted linear
combination of contributions coming from this subset. Such
experimental observables could include residual dipolar
couplings (RDCs), paramagnetic relaxation enhancement
(PRE) effects, pseudocontact shifts, and/or SAS measurements.
In all of these cases, the observable can be computed directly
from the structure of each conformer in the ensemble.19−25

Specifically, we are interested in recovering a weighted subset of
representative conformers in the case when the number of
possible structures is significantly greater than the number of
experimental observations. The large oversampled initial
ensemble can be generated using numerous methods, such as
high-temperature molecular dynamics,26 simulated annealing,27

Monte Carlo, or normal modes.28 From such oversampled
ensembles, we would like to select the ensemble that “best”
recapitulates the features of the experimental observable. Such a
problem, where there are a number of equally viable solutions,
as measured by fit to the experimental data, is commonly
referred to as an ill-posed problem.
Various criteria have been proposed in the literature for

selection of a representative ensemble; see reviews.29,30 These
can be roughly classified into several approaches: (i) methods
that select ensemble sizes based on some outside criteria, other
than the fit to experimental data, like ASTEROIDS,31

Maximum Occurrence (MO),32 or the Ensemble Optimization
Method (EOM);33 (ii) methods based on maximum entropy,

like ENSEMBLE or EROS, where an ensemble with maximum
entropy weight distribution is selected;34,35 (iii) methods where
a small-sized ensemble is selected to avoid overinterpretation of
the data, like Minimum Ensemble Selection (MES) method,26

select-and-sample,36,37 that of Huang and Grzesiek,21 or of
Francis et al.;38 (iv) or Bayesian approach with an uninformed
Jeffreys prior,39 which is related to the small-sized ensemble
methods, because Jeffreys prior is sparsity-inducing.40 Some
implementations of these approaches assume uniform weights
for all conformations in the ensemble, while others allow
nonuniform weights. Most of the above formulations are solved
using stochastic optimizations based on genetic programming
or simulated annealing.
Here, we present a new ensemble selection criterion and an

associated deterministic algorithm, called Sparse Ensemble
Selection (SES). The SES criterion selects the smallest
(sparsest) nonuniformly weighted representative ensemble
that explains the experimental data to within a desired error.
This method uses the same concept as other minimum-
ensemble methods (see above), but as we will describe below, it
is a significantly more flexible framework that could be adapted
to other sparse criteria. The SES method is based on proven
methodology developed for the well-studied signal processing
problem of optimal M-term approximation of a signal and the
compressive sensing problem (see, e.g., refs 41,42). This allows
us to rigorously reformulate our ill-posed problem as a well-
studied mathematical model. The intuition behind the SES
criterion is the Occam’s razor principle, that is, that the
observed experimental data are explained by a small number of
properties or conformers.
The SES method has several novel features: (i) it provides an

a priori method for analyzing the amount of structural
information contained in experimental restraints, which
provides an upper bound on the ensemble size that can be
recovered; (ii) it introduces a method for preconditioning the
ensemble selection problem such that further computations are
significantly sped up and potentially improved; (iii) it
introduces a new highly scalable deterministic algorithm that
can potentially recover solutions with order of magnitude better
fit than previously suggested stochastic methods, and is robust
to inaccuracies in the predicted data scaling; (iv) it provides a
clearly defined criterion for selecting the proper output
ensemble size that avoids overfitting, even when error size is
not known; and (v) it has no adjustable parameters, so the
algorithm can be applied to any set of data without
adjustments.
We apply the SES approach to study conformational

properties of K48-Ub2 at three different pH conditions, using
only a single set of experimental RDC data at each pH. From
these data, we are able to recover representative conformational
ensembles of K48-Ub2 and quantify the population dynamics of
their major and minor conformations as a function of pH. Our
findings provide new insights into the mechanisms of receptor
recognition, particularly for polyubiquitin chains.

■ THEORY
Framework for Conformational Ensemble Determi-

nation from Residual Dipolar Couplings. RDCs are NMR-
observable experimental data that can be detected when the
molecule is given a slight preferential orientational bias in
solution, for example, by using an alignment medium.43 RDCs
report on a bond vector’s orientation (most commonly amide
N−H) with respect to the external magnetic field. Con-
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sequently, RDCs provide structural information via orienta-
tional constraints. In a rigid multidomain system, the RDCs
from each individual domain can be used to determine
interdomain orientation.44,45 However, in the more general
case of a dynamic multidomain system, the observed RDCs can
be expressed as a weighed linear combination of individual
RDCs coming from N conformations, such that
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where dexp is a vector of L observed RDCs, with each entry in
the vector associated with a particular bond in the molecule, wj
is the population weight associated with the jth conformation,
and w ≥ 0 means wj ≥ 0 for all j. The quality of fit to the
observed data can be measured in terms of χ2:
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where derr,i is the experimental error in the ith observation and ri
is the corresponding residual.
The RDC values of the jth conformer, dj, can be written as a

product of a matrix Vj, depending solely on the bonds’ direction
cosines relative to the conformer’s coordinate frame, and the
vector sj containing the five independent components of the
alignment tensor for that conformer,44 such that
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Given a set of structures, V can be calculated directly from
bond orientations in each structure; however, S cannot be
determined directly.
For a rigid system, represented by a one-state ensemble, the

vector S, which in this case represents the five independent
components of the alignment tensor, can be computed directly
from experimental data dexp using a linear least-squares
optimization method, such as singular value decomposition
(SVD),44 by solving for S the equation dexp ≈ dpred = V1s1 = VS.
The resulting alignment tensor is then used to back-calculate
dpred, which can be compared to dexp. The advantage of such an
approach is that it is “model free”, in the sense that it avoids the
need to know S a priori. Given the correct structure, the
residuals between dexp and back-calculated dpred, computed
from the SVD-derived alignment tensor, should be near 0.
In the case of a dynamic system, where multiple conformers

must be taken into account, one can either predict the sj values
ab initio or treat them as additional fitting parameters (which
we will still call “SVD” approach). Because it is impossible to
deconvolve w from S, w is dropped as a parameter, thereby
losing information about the relative populations of con-
formers. Because an additional four fitting parameters (five
fitting parameters instead of one) are introduced per conformer
relative to the ab initio approach, solving this formulation

directly will most likely result in overfitting. We define the
lowest possible χ2 value corresponding to the SVD solution of
eq 3 as εSVD.
This SVD approach can be constrained by assuming a single

alignment tensor for all states.46,47 However, this assumption
breaks down when substantial interdomain motions exist,
because different domain−domain conformations could have
different alignment tensors. In fact, it can be shown that the set
of the problems spanned by the single-alignment-tensor model
is only a small subset of the more general eq 3 formulation (see
the Supporting Information).
Instead of using the SVD approach, in our method we

constrain eq 3 by introducing an ab initio prediction for sj,
similarly to previous approaches,31,48 and simplify the equation
by precomputing dj = Vjsj. Thus, this formulation of our
ensemble selection problem can also be expressed as eq 1. The
ab initio prediction inadvertently introduces additional errors in
our model. As we showed earlier,49 in the case of steric
alignment media for a two-domain system, these errors result in
less than 4 Å RMSD between the actual and RDC-predicted
structures. In other words, while the ab initio prediction might
not be fully accurate in terms of the RDC fit, in terms of
structural RMSD it is still relatively accurate, especially if we are
interested in recovering large-scale motions between two
domains, rather than small fluctuations.

Sparse Ensemble Selection − Theoretical Formula-
tion. We now describe our general SES method, as it applies to
not only RDC data, but to any experimental observable that can
be described by a linear combination of data from various
states, as, for example, in eq 1. Any potential solution of this
linear model can be described in terms of a vector of weights x,
and the goodness of its fit, measured as χ2(x) (as in eq 2)
reflecting the discrepancy (residuals) between the experimental
data and the predicted data. Importantly, we do not assume
that ∑jxj = 1 to allow for scaling errors in the prediction of
experimental observables and for the fact that we might not
recover some of the minor states that are below noise or are not
sampled by our initial ensemble. Note that w = x/∑jxj.
For L experimental data points and N-size oversampled

initial ensemble of potential conformations (L < N):
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where yi is the ith value of a column-vector y containing the
experimental data, A is an L × N matrix consisting of N aj-
columns representing the associated predicted data (e.g.,
RDCs) for the jth conformation in our initial ensemble, ||·||2
is the vector 2-norm (Euclidean distance), ri is the ith residual,
and xj is the weight of the jth conformation in the ensemble.
The ensemble is uniquely defined by the full vector x. Note that
in the case of nonuniform errors, yi and ith row of A should be
divided by the standard deviation of the ith observation, to
match eq 2.
The ensemble-selection problem can be reformulated as a

linear least-squares problem, where we seek an optimal vector
of weights x*̂, such that

χ̂* = ≥x x xarg min ( ), s.t. 0
x

2

(5)

where x*̂ is the value of x that minimizes χ2(x). The associated
ensemble represented by x*̂ is simply the set of conformations
with nonzero entries. The size of the ensemble is given by the
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0-norm of x*̂, defined as the number of nonzero entries in x*̂,
and written as ||x*̂||0. The 0-norm is an accepted notation for
sparsity, because sparsity can be thought of as the limit of the
p-norm as p→0.50 The lowest possible minimum-χ2 value in eq
5, εr = χ2(x*̂), can be computed using a non-negative least-
squares solver.51 Note that the relationship εr ≥ εSVD must
hold.
The problem with directly solving eq 5 is 2-fold: (i) the rank

of matrix A is much smaller than N, so our linear system is
underdetermined and has an infinite number of solutions x*̂
with potentially different 0-norms (overfitting); (ii) A is
potentially badly conditioned (i.e., A has a large condition
number), meaning that any computed solution x* is extremely
sensitive to noise in y. Here, we define the rank of A, rank(A),
as the number of nonzero singular values, σi, of A, and the
condition number of A as σmax/σmin, where σmax is the largest
singular value and σmin is the smallest nonzero singular value of
A.
A common approach for solving such underdetermined

system is to add a regularization term to eq 5 that will push x*̂
toward a solution that has some desired property.52 Common
approaches include truncated-SVD, Tikhonov, and maximum-
entropy regularizations.53 In contrast to these methods, we
regularize our problem by directly seeking the sparsest solution
(lowest 0-norm value). Our SES problem is formally written as

χ* = || || = ≥Mx x x xarg min ( ), s.t. , 0
x

2
0

(6)

where we compute the solution for all values M = 1,...,rank(A).
After computing these solutions, we select the smallest M that
gives χ2 ≤ ε, for some ε ≥ εr, where ε is our adjustable
regularization parameter that prevents overfitting of the data. ε
controls the interplay between the accuracy of our solution,
measured by χ2, and the sparsity of the solution, measured by
M. The higher is the value of ε, the sparser is the solution, but
the worse is the fit to the experimental data. We will describe
below how to compute a proper ε and also compare our
solution to the maximum-entropy regularization approach.
From eq 6, we make three critical observations. First, our

formulation is scale invariant, allowing one to compute
ensembles in cases when the scaling between the experimental
and predicted data cannot be accurately determined, because
||x*||0 = ||cx*||0 = ||w||0 for any constant c ≠ 0. (Therefore, the 0-
norm is not actually a norm, but a quasi-norm.) If the predicted
data are properly scaled relative to the experimental data, we
expect that all nonzero entries in x* are positive and add up to
approximately 1, otherwise the solution can simply be
normalized to adjust for the unknown error in scaling of the
predicted data. Second, because the largest possible number of
linearly independent columns in matrix A equals rank(A), the
largest possible SES ensemble size cannot exceed rank(A), that
is ||x*||0 ≤ rank(A). Third, the smallest possible χ2(x) value for
any x has lower bound of εr. That means that the closeness of
χ2(x) to εr can be used as a metric of the quality of the solution.

-Curve Regularization. A powerful method for selecting
the proper ε, or equivalently the proper M, is based on the
analysis of the corner point in the -curve (or L-curve) plot of
χ2(x*) versus ||x*||0 values, and is potentially more reliable than
general cross-validation, especially in the case of correlated
errors, which one might expect in an ab initio predictor.52 The
corner point (see the Results) corresponds to the solution in
which an addition of another ensemble member provides highly
redundant information, and therefore does not decrease χ2

nearly as much as those already included, indicating that adding
another member will potentially result in overfitting. For a good
solution, the χ2 value at the corner point should be almost
identical to εr.

Algorithm Implementation: Multi-Orthogonal Match-
ing Pursuit. The general problem of solving eq 6 for a specific
value of M is commonly known as finding the best M-term
approximation of y, and is NP-hard.54,55 Thus, guaranteeing an
optimal solution to eq 6, even for a small M-sized ensemble, is
computationally intractable for a general matrix A. This
limitation extends to similar ensemble selection methods,
such as MES, EOM, and select-and-sample. That does not
mean that finding a good approximation is also intractable.
Greedy-type algorithms, like orthogonal matching pursuit
(OMP)56 (see Supporting Information Algorithm S1), are
easy to implement, computationally efficient, perform well in
practice, and depending on the specific properties of A in some
cases can be proven to compute the optimal solution.50 The
greedy heuristics behind OMP is based on the observation that
an orthogonal representation is the most compact (sparsest)
representation of a subspace, and it can be well approximated
by adding the most orthogonal element to a representation
approximating y, one element at a time. A convenient property
of OMP is that while computing x* it also computes x* for all
ensemble sizes less than M during previous iterations.
In our case, the mapping of a specific set of conformations to

a set of experimental values might not be unique for a given M.
It is possible that several nearly optimal solutions, as measured
by χ2, come from significantly different sets of structures. For
example, due to orientational symmetry of RDCs, there are
typically eight interdomain arrangements in a dual-domain
system that have approximately equal RDC values.20 To
recover such alternative solutions, if they do exist, we modified
OMP based on the ideas from refs 57−59, such that our
implementation, which we call Multi-OMP, returns top K
nonnegative solutions, instead of just the best solution, where K
≥ 1 is a user-defined parameter (see the Supporting
Information). The overall computational complexity of Multi-
OMP is O(KMLN), meaning that the algorithm can tractably
handle very large problem sizes. A detailed description and the
theoretical advantage of our Multi-OMP algorithm are given in
the Supporting Information.
The suggested SES protocol is therefore as follows: (i)

generate an ensemble of possible conformers for the desired
molecular system of interest and compute the A matrix for
various experimental observables; (ii) select a set of experi-
ments/observables, based on mixing and matching of their
associated A matrices such that the effective rank of the
combined A matrix is maximized; (iii) collect the associated
experimental data; (iv) solve for possible ensembles using
Multi-OMP; and (v) select the optimal ensemble size using the
-curve and analyze the best, as well as alternative, ensembles
with similar χ2.

■ EXPERIMENTAL SECTION
NMR Data. Ub monomers with chain-terminating mutations (Ub

K48R and Ub D77) were expressed and purified as described.17 K48-
Ub2 were made using controlled-length chain assembly with E1 and
Lys48-selective E2-25K enzymes combined with domain-specific
isotope labeling.17

All NMR experiments were performed at 23 °C on a Bruker Avance
III 600 MHz spectrometer equipped with a cryoprobe. Protein
concentration was 125 μM for all experiments. Samples were prepared
in one of three buffers: (a) 20 mM sodium acetate at pH 4.5, (b) 20
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mM sodium phosphate at pH 6.8, or (c) 20 mM sodium phosphate at
pH 7.6, all with 5% D2O and 0.02%(w/v) NaN3. NMR data were
processed using NMRPipe60 and analyzed using Sparky.61

Amide CSPs between a given Ub unit in K48-Ub2 and its respective
monomer were calculated using the equation:

δ δΔδ = Δ + Δ[( ) ( /5) ]H
2

N
2 1/2 (7)

where ΔδH and ΔδN are the corresponding differences in the chemical
shifts for 1H and 15N, respectively. For CSPs, 1H−15N TROSY-HSQC
spectra were collected for all Ub and Ub2 species, except for pH 4.5,
where 1H−15N SOFAST-HMQC experiments were used.
All RDC measurements for backbone amide 1H−15N pairs were

carried out using 5% C12E5/hexanol media (molar ratio 0.85)62 in the
appropriate buffer. Distal and proximal Ubs at each pH were prepared
with the same stock of RDC media. The 2H splitting of the HDO
signal was 29 Hz for both distal and proximal Ubs at pH 4.5 and 27 Hz
at pH 6.8 and pH 7.6. RDCs were measured using the IPAP-HSQC
experiments with at least 500 t1 increments and the spectral widths of
25 ppm in 15N and 12 ppm in 1H.
Peak positions in 2D NMR spectra were determined by fitting

contour levels to ellipses.17 The RDCs were quantified as the
difference in 1H−15N couplings in the liquid crystal and in the
isotropic phase. For pH 4.5, the isotropic-phase 1H−15N couplings
were measured only for the distal Ub. In general, the RDC values for
both Ubs over all pHs ranged from approximately −30 to 25 Hz.

Alignment tensors for each individual Ub unit in Ub2 were determined
via linear least-squares analysis (PATI20) using the solution structure
of Ub (PDB ID 1D3Z). The alignment tensors are shown in Table 1.
Quality factors were determined as defined in ref 63.

Ensemble Generation for Lys48-Linked Ub2. To sample the
overall Ub/Ub conformational space of K48-Ub2 we generated a
20 000-structure ensemble of K48-Ub2 by adapting the Rapidly
exploring Random Trees (RRT) algorithm64 (see Supporting
Information, Figure S1). The RRT algorithm samples the conforma-
tional space by leveraging an iteratively constructed nearest-neighbor
linked tree. This iterative strategy expands the tree toward unexplored
regions and significantly improves the sampling of the overall
conformational space as compared to random sampling.

We used the RRT algorithm to sample the 12 degrees of freedom in
the Ub−Ub linker region: the ϕ−ψ angles of four N-terminal residues
(73−76) of the distal Ub, the four χ angles of Lys48 of the proximal
Ub, and the isopeptide bond between Gly76 of the distal Ub and
Lys48 of the proximal Ub.

The RRT algorithm was initialized twice, starting with the open and
closed conformations of K48-Ub2 (PDB IDs 3NS8 and 1AAR,
respectively). For each starting conformation, an ensemble of
approximately 100 000 clash-free conformations was generated. The
conformations were scored using smoothed van der Waals and
electrostatics terms,65 and then clustered iteratively with Cα-RMSD
threshold of 2 Å. The best scoring representative was selected for each

Table 1. Characteristics of the Alignment Tensor of Lys48-Linked Ub2 at Various pH Values

Ub Sxx
a Syy

a Szz
a αb βb γb

distal Ub, pH 4.5 8.42 ± 0.17 10.15 ± 0.19 −18.57 ± 0.21 97 ± 1 148 ± 0 71 ± 5
distal Ub, pH 6.8 8.49 ± 0.18 9.40 ± 0.15 −17.89 ± 0.20 116 ± 1 135 ± 0 116 ± 10
distal Ub, pH 7.6 8.41 ± 0.19 9.60 ± 0.16 −18.01 ± 0.22 117 ± 0 131 ± 0 106 ± 7
proximal Ub, pH 4.5 −0.22 ± 0.18 −6.45 ± 0.13 6.66 ± 0.18 148 ± 1 62 ± 1 145 ± 2
proximal Ub, pH 6.8 1.73 ± 0.17 6.80 ± 0.18 −8.37 ± 0.20 112 ± 1 113 ± 1 19 ± 1
proximal Ub, pH 7.6 3.19 ± 0.20 8.11 ± 0.20 −11.30 ± 0.24 112 ± 1 113 ± 1 9 ± 1

aPrincipal values (in Hz) of the alignment tensor, ordered such that |Sxx| ≤ |Syy| ≤ |Szz|.
bEuler angles (in degrees) representing orientation of the

alignment tensor axes with regard to the coordinate frame of Ub (from PDB ID 1D3Z).

Figure 1. Backbone amide chemical shift perturbations (CSPs) in the distal and proximal Ubs in K48-Ub2 versus monomeric Ub at pH 4.5, 6.8, and
7.6. The Ub unit with the free C-terminus is called “proximal”, while the other Ub, linked through its C-terminus to Lys48 on the proximal Ub, is
called “distal”.
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of the top 10 000 clusters from each of the two runs, resulting in a total
of 20 000 structures in the final ensemble. See the Supporting
Information for details.
Data Prediction. We generated two A matrices for our ensemble,

one for RDC and one for SAXS data. The errors for RDCs, derr, were
taken to be 1 Hz, while the SAXS errors where calculated from the
Poisson distribution with the λ of 10 and bound to 3%. The alignment
tensor for each of the 20 000 conformers was predicted using the
PATI program.20 To remove possible bias in NH-vector orientations
originating from the crystal structure, the solution structure of
monomeric Ub (PDB ID 1D3Z) was superimposed with each Ub unit
in each of the conformers in the ensemble, and the resulting bond
vector orientations were used to compute the RDC values from the
alignment tensor. For the analysis, we selected ∼90 “rigid” NH vectors
belonging to structurally well-defined residues, approximately evenly
split between the distal and the proximal Ub. Each predicted RDC set
forms an associated column in A, together forming an ∼90 × 20 000
matrix. For PATI prediction, the effective bicelle concentration was set
to 0.05, to approximately scale the predicted RDC values to the
experimental RDC data. The scaling of the matrix does not affect our
solution, nor any of the subsequent analyses, but instead we use it as
an alternative validation of our results, because, given the correct
scaling of the columns, we expect the weights of x* to add up to
approximately 1. The A matrix for SAXS data was generated in a
similar manner, by predicting a 200-point, 0 < q < 1 Å−1 profile using
the FoXS program.66

■ RESULTS

Lys48-Linked Di-ubiquitin Is in Equilibrium with
Several Conformations. A pH-dependent switch in the
conformation of K48-Ub2 has been observed in several
studies,9,16−18 and is considered a hallmark property of this
chain. Prior studies9,16 have shown that the analysis of
structural rearrangements occurring with pH is complicated
by the fact that in solution the Ub2 is in equilibrium between
multiple conformations; this prevents direct structural inter-
pretation of the experimental data and necessitates an
ensemble-based approach. To uncover the pH-induced
structural changes, we have collected chemical shift perturba-
tion (CSP) and 1H−15N RDC data for backbone amides in
K48-Ub2 at pH 4.5, 6.8, and 7.6 (see the Experimental Section).
CSPs report on the physical and chemical differences in the

microenvironment of a given nucleus in Ub as a monomer and
as a Ub unit in K48-Ub2. At pH 4.5, CSPs in the distal Ub are
localized to the C-terminus, while CSPs in the proximal Ub are
localized to residues surrounding Lys48 (Figure 1). All of these
CSPs stem from the changes in the chemical and electronic
microenvironment upon formation of the isopeptide bond
between the C-terminus of the distal Ub and Lys48 of the
proximal Ub. Thus, the CSP data at pH 4.5 indicate that K48-
Ub2 adopts a predominantly “open” conformation with no
detectable noncovalent inter-Ub contacts. As pH is increased,
the CSPs increase markedly, particularly for residues near the

Figure 2. The agreement between the experimental and back-calculated RDCs for the individual Ubs in K48-Ub2 (two left columns); the back-
calculated RDCs were computed using the solution structure of monomeric Ub (PDB ID 1D3Z). The agreement of the combined experimental
RDCs for K48-Ub2 (data for both Ub units taken together) and the back-calculated RDCs computed using two optimally aligned PDB 1D3Z
structures (third column). The agreement between the experimental RDCs and the predicted RDCs for the best M = 3 ensemble (right-most
column). Values of the Pearson’s correlation coefficient R and the quality factor Q are indicated.
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hydrophobic patch of Ub (Leu8, Ile44, and Val70), reflecting
strengthening of noncovalent Ub−Ub interactions mediated by
the hydrophobic patches of both Ub units and resulting in a
compact (“closed”) Ub2 conformation.
RDCs reflect both the structure of each individual Ub unit

and the overall spatial orientation of the two Ub units with
respect to each other. For all three pH conditions, there is an
excellent agreement (R ≥ 0.99, Q ≤ 0.08, Figure 2) between
the experimental RDCs for each individual Ub unit and the
back-calculated RDCs (determined via SVD) from the solution
structure of monomeric Ub (PDB ID 1D3Z), indicating that
the structure of each Ub unit is unchanged as a function of pH.
However, marked changes in the Ub2 conformation between
low and neutral pH can be seen in the striking lack of
correlation between the RDCs measured at pH 4.5 and pH 6.8
(Figure 3A). In contrast, when the RDCs at pH 7.6 are

compared to those at pH 6.8, a strong correlation is observed,
suggesting similarity between the Ub2 conformations at these

two pHs. All of these observations are in full agreement with
our prior NMR data,17 as well as the Ub2 structures derived
from 15N relaxation measurements at pH 4.5 and 6.8.9,16

Structural interpretation of the RDCs is complicated by two
issues: (i) the derived alignment tensors for the distal and
proximal Ubs at each pH have significantly different principal
values (Table 1), and (ii) the range of RDC values for the
proximal Ub is significantly smaller than that for the distal Ub,
particularly at pH 4.5 and pH 6.8. These differences cannot be
explained by variations in sample conditions for the proximal
and distal Ub RDC data collection, because deuterium-signal
splitting was identical between the two samples (see the
Experimental Section), and therefore suggest the existence of
interdomain dynamics in K48-Ub2.
Consequently, it is not possible to align the two Ubs with

respect to each other such that a good overall fit of the
combined RDCs (for both the distal and the proximal Ub
together) can be achieved with respect to the back-calculated
RDCs from a single Ub2 structure (Figure 2, third column),
especially at pH 4.5 and pH 6.8 (R < 0.92, Q > 0.23).
Consideration of multiple conformations is therefore necessary
to improve the agreement between experimental and predicted
RDCs.
Interestingly, even though there is a strong correlation

between the RDC data at pH 7.6 and pH 6.8, the overall spread
of the proximal-Ub RDCs at pH 7.6 is slightly (1.3-fold) higher
compared to that at pH 6.8 (Figures 2 and 3B), whereas there
is virtually no difference in the RDC ranges for the distal Ubs at
these two pHs. This cannot be explained by a difference in the
alignment medium concentration, because that would rescale
the RDC values of both Ubs in Ub2 uniformly. Also, the
principal values of the alignment tensor reported by the distal
and proximal Ubs are in a much closer agreement at pH 7.6
than at pH 6.8. These data point to the ability to treat (as a first
approximation) the Ub2 system as a rigid entity at pH 7.6,
which prompted our attempt to construct a single con-
formation for the di-Ub system. The agreement between the
experimental and back-calculated RDCs for this single
conformation is markedly improved (R = 0.96, Q = 0.15)
compared to the single conformation representations for pH
4.5 and pH 6.8; however, the R and Q values are still somewhat
higher than the corresponding values for the individual Ub
units, indicative that certain features of the observed RDCs are

Figure 3. Correlation plots between the RDC data at various pH
conditions for the distal (blue ●) and proximal (red ■) Ubs in K48-
Ub2. (A) RDCs at pH 6.8 versus pH 4.5. The RDCs for the distal and
the proximal Ubs are completely uncorrelated (distal, R = 0.89;
proximal, R = −0.26), indicating a large structural difference between
the two pH conditions. (B) RDCs at pH 6.8 versus pH 7.6. The good
overall correlation between the RDCs (distal, R = 0.99; proximal, R =
0.98) suggests similarity between the structural ensembles at the two
pH values. The greater than 1 slope for the proximal Ub along with the
factor of ∼2 greater spread of the RDC values at pH 7.6 as compared
to pH 6.8 suggests an increased conformational order of this Ub unit
at higher pH. The dashed lines in both panels represent the
corresponding regression lines. Values of the Pearson’s correlation
coefficient R and the quality factor Q are indicated.

Figure 4. Recoverability properties of the 20 000-structures RDC ensemble. (A) The σi/σmax values of the largest 12 singular values of A, for RDC
(■) and SAXS (red ●) matrices of the ensemble. (B) Average relative error in the best recovered solution, for randomly generated x with ||x||0
nonzero values; K = 100,...,105, from left to right. The black bars represent the standard deviation. Optimal recovery is guaranteed for ||x||0 = 1. (C)
Comparison of errors for SES and MES algorithms (blue and red symbols, respectively), as a function of computation time. No preconditioning or
compression was used.
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not captured with a single-structure representation even at pH
7.6.
The above observations and the fact that this is a well-studied

system establish K48-Ub2 as an excellent model system to test
our sparse ensemble selection method. Therefore, we applied
our SES method to the RDC data, and use the results to answer
several important questions: (i) whether the K48-Ub2 takes on
the same primary conformations at all pH conditions, (ii) how
many major conformations are sampled, (iii) what are their
associated populations, (iv) how are these populations
modulated with pH, and, ultimately, (v) whether these
conformations can provide clues to possible mechanisms of
receptors recognition by K48-Ub2?
A Priori Analysis of RDC and SAXS Constraints for

Lys48-Linked Ub2. A critical question in using experimental
data as a constraint for ensemble analysis is what amount of
independent information a particular type of experimental data
contains, because this dictates how many independent
parameters can be used to fit the data. The number of
independent components is determined by the effective rank of
matrix A, which can be computed a priori. Consequently, the
maximum limit of the ensemble size should be constrained to
no more than the effective rank of A, defined here as the
number of “large” relative singular values, σi/σmax (e.g., greater
than 0.01).
To demonstrate the ability of such analysis to provide

valuable a priori information, we compare two commonly used
experimental constraints for recovering ensembles, RDCs and
SAXS profiles.21,33 We generate the A matrix from the 20 000-
conformers ensemble using PATI for RDC data and FoXS for
SAXS data (see the Experimental Section). Note that noise was

included in A by scaling each row of A by the associated error
estimate.
The largest 12 σi/σmax values for the two generated A

matrices are shown in Figure 4A. Even before collecting any
experimental data, one can see that for K48-Ub2 the RDC
matrix A contains significantly more large relative singular
values than the SAXS matrix A, indicating that RDCs are more
suitable for discriminating among different conformers. Figure
4A shows that by using RDCs we can potentially recover a SES
ensemble of up to 10 structures. By contrast, the SAXS matrix
A has far fewer significant singular values, indicating that SAXS
data are not as suited for accurate ensemble recovery as are
RDCs, for the generated Ub2 ensemble. There are two reasons
the SAXS matrix A has only a small effective rank: (i) the radius
of gyration is very similar for all generated Ub2 structures (20.3
± 1.8 Å), and (ii) the scattering profile is bandwidth limited by
the maximal interatomic distance (diameter) of the molecule,
while also sampled on a very limited domain of scattering
vectors (q = 0−1 Å−1),67 meaning that the SAXS profile of any
possible K48-Ub2 ensemble contains only a small number of
independent components (see also Supporting Information
Figure S2 and the Discussion). In fact, our analysis showed that
over 96% of the information in the SAXS profile for any Ub2
conformer could be explained by any other conformer in the
20 000-conformer ensemble. Therefore, it is difficult to select
even a two-state solution for K48-Ub2 based on SAXS data
without overfitting. The theoretical observations described
above guided us to use RDCs, rather than SAXS data, for SES
analysis of the conformational ensemble of K48-Ub2.
Before proceeding with an ensemble recovery, we first

demonstrate our ability to recover a low- χ2 solution for any
sparse input vector x, generated from synthetic RDC data.

Figure 5. (A,B) -curve plots: (A) linear and (B) log−log plots, for M = 1,...,6 SES ensembles for K48-Ub2 at various pH conditions. The dashed line
represents both εSVD/L and εr/L, the best possible solution when fitting all 20 000 columns for the SVD and ab initio predicted tensor models (but
arbitrary ensemble sizes). (C) Residuals, ri, for the x* solutions for K48-Ub2 RDC data at pH 4.5, 6.8, and 7.6, for M = 0 (blue), 1 (green), 2
(yellow), and 3 (red). Residuals for the distal and proximal Ubs are shown on the left and right sides, respectively, of the dashed line.
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Figure 4B shows that the relative error of our best recovered
solution (for K > 102) is below the expected experimental error
(around 5%) in RDCs. Given any set of experimentally
observed RDCs coming from a 1 to 6-state ensemble, and the
parameter K = 105, we can realistically expect to recover a
“good” solution, as measured by the fit to the observed
experimental data. On the basis of these results, we set K = 105

for all subsequent computations described below. At this value
of K, we can compute the ensemble solution in less than 10 min
on a single midrange desktop. Significant speedup was achieved
for all computations described here by preconditioning χ2, as
detailed in the Supporting Information.
Comparison to MES. We compare our Multi-OMP

algorithm to the publicly available genetic-programming
algorithm MES.26 As the quality of the recovery can be
improved by increasing the computation time in both methods,
we assess the performance of MES and Multi-OMP given the
same computational resources and time. The results for the 3-
sized and 5-sized ensembles, using the same RDC matrix, are
shown in Figure 4C. Not only does the Multi-OMP algorithm
recover an order of magnitude better (in terms of relative
error) solution for both M = 3 and M = 5, but during the same
computation Multi-OMP also recovers all of the solutions for
ensembles of size <M. This latter feature of Multi-OMP is
strategically important because we determine the optimal
ensemble size based on a -curve analysis of all ensemble sizes
up to the effective rank of the ab initio-generated A matrix. In
contrast, the current implementation of MES requires separate
computations for each value of M, resulting in a factor O(M)
increase in the total computation time. The improvement in
results for Multi-OMP over a genetic-programming algorithm
can potentially be attributed to the better heuristic and faster
recomputation of weights (see the Supporting Information).
SES Analysis of RDCs for Lys48-Linked Ub2. Using our

Multi-OMP algorithm, we recovered from the RDC data the
best solutions for 1 to 6-state ensembles of K48-Ub2 at all three
pH conditions (Figure 5). Because all computations are
deterministic, all of the described results are entirely
reproducible. For all pHs, the χ2 decreases monotonically as a
function of the ensemble size, and for ensembles of size M = 3
and above the error ε is virtually indistinguishable from εr, the
lowest error possible when using all structures in the ensemble,
and from εSVD, the lowest error possible when also fitting all
structures and their associated alignment tensors (see
theoretical formulation above). Because ε ≈ εr ≈ εSVD, not
only did we successfully solve the SES formulation for M = 3,
but our 3-state SES solution is also a solution to the SVD
approach.
We performed -curve analysis on the 1−6-sized ensembles

(Figure 5A,B). From the linear -curve plot, one can see that
there is only a nominal improvement in the χ2 for the top M >
3 ensemble solutions. The corner point of the log−log plot
suggests the selection of M = 3 as the proper ensemble size for
all three pHs. Note that at pH 7.6, the contributions of 2-sized
or 3-sized ensembles to reproducing the experimental RDCs
are significantly smaller than at lower pH values. Furthermore, a
1-sized ensemble solution at pH 7.6 reports a better χ2 value
than that for a 1-sized solution at pH 4.5 or pH 6.8. These
observations are in agreement with our prior assessment (see
above) that, at pH 7.6, a single-conformation representation
does a reasonably good job (but not entirely adequate) of
reproducing the experimental RDCs (Figure 2, third column).

The residuals between experimental and predicted RDCs for
the best 1 to 3-state ensembles for all three pHs are shown in
Figure 5C. Remarkably, the agreement between the exper-
imental RDCs and the RDCs calculated from the 3-state
ensembles at each pH is as good as the agreement between the
experimental and back-calculated RDCs for the individual Ub
units (compare the fourth column with the first and second
columns in Figure 2). In addition, the population weights are
stable with respect to experimental noise (Supporting
Information).
The structures of the three ensemble members at each pH

are shown in Figure 6 (see Supporting Information Figure S6

for M = 1 and M = 2 solutions). Importantly, at pH 4.5, all
states exhibit an open Ub/Ub conformation with no obvious
noncovalent contacts between the two Ub units. The
populations of the 3-state ensemble at pH 4.5 are 49%, 30%,
and 21%, for the three conformations. At higher pHs, we
observe the emergence of a major conformation (populated at
62% at pH 6.8 and 69% at pH 7.6) that resembles the “closed”
conformation of K48-Ub2, seen previously both in crystals68

and in solution.9,16,17,69 The increase in the population of the
closed conformation is fully consistent with the better fit of
RDCs to a single conformation (Figure 2) and with our CSP
data (Figure 1). Note that the residues with significant CSPs
localize to the Ub/Ub interface in the “closed” conformation.17

Interestingly, the minor conformations (populations <22%) at
both pH 6.8 and pH 7.6 resemble more “open” conformations,
consistent with observations from 15N relaxation data at pH
6.8.16 All of these results are consistent with the hypothesis17

that K48-Ub2 undergoes a population change from mainly open
conformations at acidic pH, to a predominantly closed
conformation at higher pH (Figure 7). The high relative
population of the closed conformation at neutral and higher pH

Figure 6. The best overall ensemble solutions for K48-Ub2 at pH 4.5,
6.8, and 7.6. Red coloring of the ribbon marks residues that exhibited
significant spectral differences (CSPs ≥ 0.05 ppm) between the Ub2
and the corresponding Ub monomers; the spheres (yellow) represent
the side chains of the hydrophobic patch residues Leu8, Ile44, and
Val70 in both Ub units. The structures are oriented such that the distal
Ub is on the left and in the same orientation throughout this Article.
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(62−69%) is also in general agreement with prior NMR and
FRET measurements.9,11,16,17

Alternative Ensembles That Explain Lys48-Linked Ub2
RDC Data. In addition to providing the best-χ2 solution, the
SES approach allows the analysis of other alternative ensembles
that yield a similarly low χ2. One of the advantages of the Multi-
OMP computational method is that for each M-sized best
ensemble we also deterministically recover K − 1 best
alternative solutions (see the Multi-OMP section above).
To visualize the structural similarity of the K − 1 alternative

solutions with the best solution, we analyzed all solutions
within 3% of the χ2 for the best solution. We then hierarchically
clustered all of the conformers in the best solution and all
alternative solutions by 8 Å Cα-RMSD cutoff, showing only the
lowest-χ2 solution that comes from the same set of M clusters
(see Supporting Information Figure S3). The mean and
standard deviation of the populations of the top 3% 3-state
ensembles at pH 4.5 are [47% ± 1%, 31% ± 1%, 22% ± 1%]; at
pH 6.8 are [62% ± 0%, 22% ± 0%, 16% ± 0%]; and at pH 7.6
are [71% ± 4%, 18% ± 4%, 11% ± 1%]. The top 3% alternative
solutions of the 3-state ensembles at pH 6.8 and 7.6 all have an
almost identical dominant closed conformation (Figure 7,
Supporting Information Figures S4, S5). Remarkably, this
feature is consistently preserved even in the top 15% of the 3-
state ensembles, thus demonstrating the stability of our SES
results.
Comparison to Maximum Entropy Solution. Another

regularization method used for ensemble selection is maximum
entropy (MaxEnt).34,35 In contrast to the 0-norm regulariza-
tion employed by SES to solve the ensemble selection problem
(eq 6), the MaxEnt method uses relative entropy regularization
to balance fit to the observed data with the divergence between
the computed population weights w, and some prior
distribution p:
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with λ ≥ 0 being a regularization parameter.
To verify that our results are mainly driven by the

experimental data and not by sparsity regularization, we
compared our SES results to the MaxEnt solution for all
three pH conditions. MaxEnt solutions were computed using
the uniform prior distribution, pj = 1/N, and λ selected using
the described -curve approach (see the Supporting Informa-
tion for computational details and results).

Because our initial ensemble contains 20 000 structures, the
MaxEnt solution contains a large number of nonzero
population weights. To interpret the results of the MaxEnt
solution, we selected only the “significant” states, defined as
those states with population weights greater than two standard
deviations above the averaged population weight for all states.
This corresponds to 559, 239, and 103 states, for pH 4.5, 6.8,
and 7.6, respectively (Supporting Information Figure S7).
These significant states and their associated populations were
aggregated together by hierarchical clustering within 4 Å Cα-
RMSD. The centroids of the four most populated clusters and
their associated aggregated populations are shown in Figure 8.
The displayed weights have been normalized such that the
significant states’ weights add up to 1 (the absolute weights are
shown in the brackets). The agreement between the
experimental data and the predicted data using only the
weights of the significant states is shown in Supporting
Information Figure S7.
From Figure 8, it is interesting to note that the MaxEnt

solution does indeed capture several salient features of the K48-
Ub2 conformational ensemble. First, with increasing pH, the
population of the major conformation increases from 18% to
44% for pH 6.8, and remains at 38% for pH 7.6. Only open
conformations are detected at low pH, and more conformations
at higher pH values resemble closed conformations of K48-Ub2.
The first two states of the MaxEnt solution are almost identical
between pH 6.8 and pH 7.6 and somewhat structurally similar
to each other. If combined, their populations approach the
population of the major conformation in the SES solution, for
their respective pHs (Figure 6). In general, the number of states
explaining the majority of experimental RDC data decreases
with pH (Figure 8B), supporting the hypothesis that K48-Ub2
becomes more ordered at higher pH.
Unlike our SES solution, where just three representative

states explain the experimental data, the first four clustered
states capture only 15%, 47%, and 66% of the total population,
for pH 4.5, 6.8, and 7.6, respectively, and so they cannot be
interpreted directly as the four representative states (see
Supporting Information Figure S7). In addition, MaxEnt
solution does not capture the putative closed state found in
the crystal PDB structure 1AAR. Indeed, the Cα-RMSD versus
1AAR of the MaxEnt’s major states at pH 6.8 and 7.6 is 4.8 Å,
as compared to 1.9 and 2.2 Å, respectively, for SES.
Nonetheless, it is encouraging that the maximum entropy

and the SES ensemble solutions are somewhat similar at higher
pH values. This suggests that the overall pattern in solutions of
both methods is due to the robustness of the experimental data,
rather than assumptions inherent in either method. However,
three major issues hamper the MaxEnt approach: (i) the

Figure 7. The top 3% M = 3 ensemble solutions for K48-Ub2 at pH 7.6 (the numbers show average populations) and the crystal structure (left) of
the closed state of K48-Ub2 (PDB ID 1AAR), for comparison. Red coloring of the ribbon marks residues that exhibited significant spectral
differences (CSPs ≥ 0.05 ppm) between the Ub2 and the corresponding Ub monomers; the spheres (yellow) represent the side chains of the
hydrophobic patch residues Leu8, Ile44, and Val70 in both Ub units.
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solution depends on the assumption of the prior distribution p,
and therefore the ensemble generation method. A similar issue
with dependence on the input ensemble arises with truncated-
SVD and Tikhonov regularizations. (ii) The MaxEnt solution
ensemble is difficult to interpret, requiring a further, somewhat
subjective analysis, to reduce the solution to a few simple
human-understandable properties.29,34 (iii) It is difficult to
adapt the method to cases when there is scaling error in the

predicted data, or when some states are not in the initial
ensemble, and thus the weights are not expected to add to 1.

■ DISCUSSION
Here, we developed a novel method for recovering multiple
conformational states from a limited number of observations.
We applied this method to determine, using RDC measure-
ments, representative conformational ensembles for K48-Ub2 as
a function of pH. Our results are in full agreement with the

Figure 8. The results of MaxEnt analysis of the K48-Ub2 RDC data. (A) The top four populated clusters of the significant states for the MaxEnt
solution at each pH value, visually represented by their centroids, along with the clusters’ aggregated population weights. A significant state is the one
that has a population of more than two standard deviations above the mean weight. The weights indicated here have been normalized such that the
total weight of the significant states equals 1. The absolute (unnormalized) weights of the clusters are given in brackets. The clusters shown here
include in total 268, 182, and 83 states, for pH 4.5, 6.8, and 7.6, respectively. (B) The improvement in the quality of fit as a function of the number of
most populated states included. The states are sorted in descending order by their MaxEnt solution weights. The dashed line shows the best possible
χ2/L value (εr/L) computed by minimizing eq 5.
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previous observations made from entirely independent
measurements, including CSPs, 15N relaxation, site-specific
spin labeling,9,16−18 and single-molecule FRET.11 The fact that
we were able to recover the ensembles and their associated
populations based solely on a single set of RDC data suggests
that sparsity regularization, known to be a powerful tool for
solving numerous ill-posed problems, can also be successfully
applied to the ensemble selection problem. That an entirely
different method, MaxEnt, yields similar results (top populated
conformers, increased conformational order at higher pH)
lends further support to our findings.
Biological Relevance to Polyubiquitin Chain Recog-

nition. The SES-derived structural ensemble of K48-Ub2
comprises both “closed” and “open” conformations. The closed
conformation, predominantly populated at pH 6.8 and 7.6,
features a Ub−Ub interface formed by the hydrophobic patches
of both Ub units. This interface, consistently present in all SES
solutions in the top 15% clusters (Supporting Information
Figures S3−S5), is in full agreement with the CSPs detected in
both Ub units, and resembles the Ub−Ub interface in the
published (closed) structures of K48-Ub2 (PDB IDs 1AAR,
2BGF, 3M3J) and Ub4 (PDB IDs 2O6V, 1FJ9). Open
conformations, low-populated at or near neutral pH (pH 6.8,
pH 7.6), dominate the SES ensemble at acidic conditions (pH
4.5), with the closed conformation vanishing from that

ensemble as its weight dropped below the detection threshold.
These results are in full agreement with the experimental CSP
data (Figure 1).
Important to this analysis is the elucidation of the low-

populated states at near-physiological pH, as these states
structurally represent binding-competent states, whereas the
major (closed) conformation does not (the Ub hydrophobic
patch critical for binding is sequestered by the Ub/Ub
interface). The minor conformations observed here represent
low-lying excited states of K48-Ub2, with the free-energy
difference of ∼1.8 RT (1.1 kcal/mol) from the major state, as
determined from the differences in population between the
major and minor conformations. Moreover, the fact that a
single set of NMR signals was detected for each Ub in our
studies indicates that the dynamic equilibrium between these
states is fast on the NMR chemical-shift time scale. This then
suggests that the energy barriers separating various states within
the conformational ensembles derived here are such that these
states are easily accessible both kinetically and thermodynami-
cally at physiological temperatures. Importantly, in contrast to
the binding-incompetent closed conformation, the hydrophobic
patches in the open conformations are solvent exposed and,
therefore, accessible to ligands. Thus, these conformations
represent binding-competent states of K48-Ub2.

Figure 9. Known ligand-bound structures of K48-Ub2 are similar to some of the low-populated ensemble states (shown immediately to the right).
The structures are oriented such that the distal Ub is on the left and has the same orientation as in all other figures in this paper. The Ub moieties are
colored cyan and shown in ribbon representation, with the side chains of the hydrophobic-patch residues Leu8, Ile44, and Val70 shown as yellow
spheres. The ligand is shown as a white narrow ribbon and indicated for each complex.
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Remarkably, the inter-Ub orientations and positioning in
many of the open conformations detected here resemble the
bound conformations of K48-Ub2 in complexes with various
receptor proteins (see Figure 9). For example, the UBA2
domain from the proteasomal shuttle protein hHR23a binds to
K48-Ub2 selectively and in a sandwich-like manner (Figure
9A);70 this conformation is captured in one of the minor states
of the (unbound) K48-Ub2 at pH 6.8 (Figure 6). Similar
considerations apply to other known ligand-bound structures of
K48-Ub2 (Figure 9). The insights gleaned from the structures
of the minor conformers revealed here suggest that ligand
recognition and binding to polyUb may employ a mechanism
whereby a chain conformation predisposed for accommodating
a specific ligand is selected from the available conformational
ensemble; and subsequent steps might include further
structural rearrangements to form the proper interfaces. The
observations made here are likely to extend to other polyUb
chains comprising different lysine linkages, and contribute to
the understanding of how Ub chains are specifically recognized
by target receptor proteins.
SES Method as a General Approach to Ensemble

Recovery. The SES method can be viewed as a general
framework for understanding and recovering sparse conforma-
tional information from any linearly convoluted set of
experimental data or a combination thereof (e.g., RDCs and
PREs). The sparsity framework allows us to avoid assuming a
prior population distribution of the initial ensemble (other than
sparsity), and therefore removes the dependence of the
solution on the size and the sampling distribution of the initial
ensemble and scaling of data, which could vary depending on
the ensemble-generation and ab initio prediction methods.
Such a property does not exist in maximum-entropy or energy
minimization approaches.
The general applicability of a specific structural restraint, or a

combination thereof, is an important theoretical question.
Ideally, structural restraints should have the following two
properties: (i) sensitivity, that is, small structural alterations
would result in a detectable change in experimental data; and
(ii) uniqueness, that is, no two conformers are described by the
same experimental data. In terms of linear algebra, these
requirements refer to the degree of correlation (orthogonality)
in matrix A columns. In the ideal case, A is an orthogonal
matrix where all columns are completely uncorrelated, so that
the true ensemble can be unambiguously recovered, and the
results are robust to experimental noise. However, in practice,
matrix A columns are at least partially correlated, because the
number of conformers in the initial ensemble is much greater
than the number of experimental observations. In that case, it
still might be possible to unambiguously recover a sparse
solution, but not a solution that has a large number of
conformers, if small subsets of A columns are mostly
uncorrelated (see restricted isometry property71).
One can gain insight into how well different types of

experimental restraints satisfy the above criteria by visualizing
and comparing the pattern of values and correlation between
different columns of A (as illustrated in Supporting Information
Figure S2). If the predicted data (divided by the experimental
errors) are well spread, such that each column’s pattern is
distinct, and hence not correlated, then the associated
experimental data most likely have better ensemble recovery
properties than those where all of the columns have a similar
pattern, and are correlated. See Supporting Information Figure
S2 for the visualization of RDC, SAXS, and PRE matrices.

In our case, the columns of RDC matrix A are fairly well
spread. The matrix has 10 independent components, so using
RDCs as sole restraints potentially allows one to recover
ensembles of size up to 10, although RDCs cannot be used to
unambiguously recover larger ensembles. By contrast, the SAXS
matrix A columns are highly correlated and show a similar
pattern to each other (see Supporting Information Figure S1).
This suggests a priori that unambiguous recovery of even small
ensembles using SAXS is problematic. While this observation
was made for diubiquitin, we would expect this conclusion to
hold for other molecular systems where there are no significant
variations in the atom distribution between conformers.
However, SAXS data can potentially supplement other
experimental restraints to improve ensemble recovery.
Importantly, the SES formulation can be extended toward a

more general concept of sparsity. In this Article, we chose to
interpret the experimental data in terms of the weights of
individual conformational states. However, the interpretation of
any particular biological system is dependent on what is
biologically relevant, and one might want to seek alternative
representations, such as relevant folding pathways, motion
modes, or any other linear combination of individual states.
Our SES approach can accommodate these alternative
representations by introducing a more general formulation:

λ* = || − || + || || ≥x APx y x xarg min , s.t. 0
x

2
2

0
(9)

where P is a matrix of a finite set of column vectors that map a
desired sparse basis of conformational states onto probabilities
of individual states, and λ is a regularization parameter that can
be computed using the -curve, or some other methodology. In
the study presented here, P was the identity matrix, but the
columns of P can instead represent a set of possibly meaningful
combinations of individual states, for example, reflecting
continuous motions. This allows one to extend the applicability
of SES to a broader set of problems, such as intrinsically
disordered proteins, where a small number of conformations
might not be an adequate representation. For these types of
problems, the flexibility of the sparsity approach over the
simpler minimum ensemble selection could be important.
Finally, the SES method is a complete approach that

provides: a method for analyzing a priori the amount of
structural information that a particular set of experimental data
provides; a problem formulation that is stable with respect to
the input ensemble’s size and sampling distribution; a well-
defined regularization technique for choosing the proper
ensemble size based on fit to data; a robust deterministic
computational method for efficiently computing a solution even
for very large ensemble sizes, which can also account for errors
in scaling of predicted data; a validation technique for checking
the quality of the computed solution by comparing the errors to
a lower bound determined from experimental data; and a
general model that can be adapted to individual problems by
seeking various sparse solutions, not just minimum ensemble.
Our SES algorithm is simple to implement, provides a

deterministic solution that requires no problem-specific tuning
parameters, and has computational complexity that scales
linearly with input and output ensemble sizes. Thus, SES
provides entirely reproducible results that can be computed in
reasonable time on individual desktops. In the case when one
wishes to compute sparsest ensembles with only uniform
weights, the Multi-OMP algorithm can be sped up by removing
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the least-squares optimization step, and introducing several
other small modifications.
It is important to note that our Multi-OMP algorithm tries to

improve the chance of recovery by propagating K starting
points during each m iteration. Many alternative algorithms
exist with different recoverability properties; however, no
known algorithm can guarantee an optimal solution in a
general case. It is foreseeable that, as more experimental
observations are added (to y), and the initial ensemble of
potential conformations is better refined, the properties of
matrix A will improve such that unique and optimal sparse
recovery could be guaranteed. The chance of recovery can also
be potentially improved by preconditioning (Supporting
Information). Realizing under what conditions the chance of
recovery improves is one of the advantages of expressing this
problem in terms of the M-term approximation model.

■ CONCLUSIONS
Here, we described and demonstrated, as a proof of principle, a
novel method, which we call Sparse Ensemble Selection, for
determining multiple conformational states from a limited
number of observations. SES recasts the problem in terms of
sparse approximations, which is tied to the active research area
of compressive sensing. We presented clear criteria for selecting
proper ensemble sizes without overfitting the data, and
described a computationally efficient deterministic algorithm
that can compute these criteria in a tractable amount of time.
Importantly, the method does not assume any constraints on
the resulting ensemble size, individual weights, absolute scaling
of data, or an error threshold, but rather determines these
values as part of the computation.
We applied the SES method to elucidate the conformational

ensemble of Lys48-linked Ub2, which is the minimal structural
and recognition element in longer polyUb chains. Using RDC
data collected at a range of pH values from 4.5 to 7.6, we
showed that our method yields structural ensembles consistent
with previously published results determined by alternative
methods. Our SES analysis revealed that in the low-populated
conformational states of the Ub2 the hydrophobic surface
patches on both Ub units are solvent accessible, which makes
these conformers ligand-binding competent. Moreover, the
resemblance with the known ligand-bound structures of Lys48-
linked Ub2 suggests that some of these open conformational
states are predisposed for binding to various Ub-chain
receptors. These results provide an important link between
the conformational properties of the polyUb signal and the
possible mechanisms of its recognition by cellular receptors.
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